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ABSTRACT 

ii 

The elastic-plastic behavior of a ring under steady state radial 

temperature gradient  is analyzed.    The material is assumed to be 

elastic-perfectly plastic and its yield stress  in simple shear to be a 

continuous and general monotonically decreasing positive function of 

temperature.    Modified Tresca's yield condition and the associated flow 

rules are used. 
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NOTATIONS 

a 

b 

c 

I 

£ 

h 

k 

k(T) 

WVVNi 

p»»pb 

r.e.z 

r ■ 

T 

Tr»Tc*Td»T*»Tb 

a 

6 

AT 

ATe 

ATC 

we
z 

inner boundary of an elastic region In the ring 

outer boundary of an elastic region In the ring 

Inner boundary of the ring 

outer boundary of the ring 

Young's modulus 

half the thickness of the ring 

yield stress In simple shear 

k as a function of temperature 

value of k at the place denoted by the subscript 

k at 0oF 

pressures at the elastic boundaries a and b respectively 

cylindrical coordinates 
do y 

place In an elastic region where -— ■ 0 
dr 

place In an elastic region where oa ■ 0 

temperature In 0F 

T at the place denoted by the subscript 

radial and axial displacements respectively 

coefficient of thermal expansion 

absolute value of slope of a linear function k(T) 

T - T 
c  ri 

T - T. 
a   b 

AT for incipience of yielding 

AT for complete yielding of the ring 

radial, tangential and axial strains respectively 
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e'.e'.c' > elastic parts of the radial, tangential and axial 
strains respectively 

c",c"te" ■ plastic parts of the radial, tangential and axial 
strains respectively 

n,p ■ elastic-plastic interfaces (n > p) 

v ■ Poisson's ratio 

o ,o ,o ■ radial, tangential and axial streuses respectively 

o ,o  = a at r ■ p or n respectively rp» rn   r v ^ 
aa  »Oo ■ o- at r ■ p or n respectively op on   o 



An Elasto-plastlc Analysis of Circular Rings With 

Temperature Dependent Yield Stress 

by 

N. T. Patel and L. W. Hu 

1.  Introduction . 

During the last two decades a number of thermoelastlc-plastic 

studies on symmetric problems have been made. For instance, the 

solutions have been obtained for the steady stite temperature problems 

m# [2] 
of thick-valled spheres by Covper   , Johnson and Mellor   and 

[3] Ik] 
Rogozinski  , thick-walled cylinders by Bland   and Kammash, Murch 

and Naghdi   and thin rings by Wilholt  . Problems have been 

[7] studied for transient temperatures in p ;es by Yuksel  , Landau, 

Weiner and Zwicky  , and Mendelson and Spero  , solid disks by 

Parkus   , cylinders by Landau and Zwicky1  , and half spaces by Lee 

[12] 
and Jaunzemif   . In most of these investigations, the mechanical and 

thermal parameters—modulus of elasticity £, Poisson's ratio v, yield 

stress in simple shear k, coefficient of expansion a, thermal conductivity 

and specific heat—have been assumed to be Independent of temperature and 

stresses. Only in a few papers * 1  > • J has the thermal dependence 

of the yield stress in shear k(T) been taken into account. In reference 

[3] thermal dependence of thermal conductivity has been also included. 

However, non-isothermal yield conditions more general than those in- 

cluding thermal dependence through k(T) have not been used. A theory 

Lumbers in square brackets refer to the list of references at the end 
of the paper. 
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on ehe flow rules associated with general nonlsothermal yield condition 

[13] has been suggested by Prager in 195Ö.    To this theory Boley and 

ilk] Welner have given a plausible explanation and attempts have been 

made to apply the theory in particular using Jc(T) in Tresca's or von 

Mises*  yield condition. 

The purpose of the present study is to investigate in detail the 

influence of thermal dependence of yield stress on elastic-plastic 

stresses and deformation of a thin,  finite, annular ring subjected to a 

steady state radial temperature gradient with traction free boundaries. 

For the case of isothermal Tresca's yield condition, a stress solution 

16] to this problem has been given by Wilhoit      .    In this paper,  the 

Tresca's yield condition, but modified in that the yield stress in simple 

shear k is a continuous, general, monotonically decreasing positive 

/   v dk function of T, i.e.  k » k(T) > 0, T=- < 0, is used.    Flow rules ai. 
[13 ik] 

associated with this yield condition      *        are used to investigate the 

deformation.    For illustration, a solution for linear k(T) is presented. 

The material is assumed to be elastic-nonstrainhardening and other 

physical    parameters are assumed to be independent of temperature and 

stresses. 

In the present problem the loading is thermal and is considered 

only due to a difference in the temperatures at the two boundaries of 

the ring.    The ring is considered to be initially stress and strain- 

free and at a uniform temperature.    A complete monotonically increas- 

ing loading program is assumed and unloading is not to be considered 

here.    Two cases depending upon whether the inner temperature is higher 

or lower than the outer temperature become different and require 
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individual treatment. In each case the loading may be considered to 

proceed m two v.'ays.  In one instance, the loading is assumed to 

proceed such that the temperature at a boundary is changed sxtremely 

slowly and in infinitesimal increments while the temperature at the 

other boundary is held cjnstant. The temperature distribution may be 

assumed to be in steady state all the time. On the other hand, if it 

is felt that this kind of loading history is really not continuous 

because the transient states between the steady states are neglected, 

one may instead imagine the present problem applicable to problems in 

which there are heat sources everywhere on each face keeping at any 

time and leading during loading the ring through steady state tempera- 

ture conditions 

Three points may be noted:  (1) The temperature at a boundary 

may be changed by either heating or cooling.  (2) During a loading 

program, the instantaneous temperatures at either boundaries may 

alternately be held constant while the other is subjected to variation. 

For instance, first the temperature at the inside boundary may be 

raised for some time while the temperature at the outside boundary is 

held constant and then the temperature at the outside boundary mav be 

lowered holding the temperature at the inside boundary constant. 

('S)    However, the case of varying the temperatures at both boundaries 

s.'muitaneously is not included in this analysis. 

The fact that stresses in the plastic regions are statically 

determinate except in one special case simplifies the determination of 

the stresses in the elastic regions. The displacement solution is ob- 

tained and provides a Justification to the a priori assumption of 



infinitesimal strains at high temperatures or at high difference in the 

boundary temperatures. 

2. Fundamental Equations. 

Consider a circular ring of inside radius c and outside radius d 

with thickness 2h, as shown in Figure 1. Let the coordinate system be 

cylindrical (r,e,z) with the origin on the central axis of the ring and 

at the midpoint of its thickness. The following sixteen equations are 

valid in an elastic region. 

The radial stress c and t*.e tangential stress a    are related by 

the equilibrium equation: 

da 
r dT - 0e " ar (i) 

The strain-displacement equations are: 

«nd '• "1» ('') 

where e , c. and e are the radial, tangential and axial strains 
r  o     z 

respectively, and u(r) and w(rlz) are the radial and axial displace- 

ments respectively. 

Let the temperatures at the inner boundary r ■ c and the outer 

boundary r « d be T and T. respectively. It is well known that, in 

the case of radial steady state temperature gradient, the temperature 

distribution must satisfy the Laplace's equation 



d2l^€-0 (5) 
dr^  rdr 

The solution of this eRation is 

,.t(.JLtaS W        I 
c 

or i.t4*klL|,l (T) | 
in - c 

Where AT - Tc - Td . (8) I 

AT may be positive or negative. 

Assuming that the present problem is a plane stress one, axial 

stress 

oz - 0 (9) 

and Ei""^-E  *aT (10) 

^"T"^1*01 (11) 

«nd E^ - - ^- - -^ ♦ oT (12) 

where E and a are the modulus of elasticity and coefficient of thermal 

expansion respectively.     Single and double primes will be used to 

denote the elastic and j '.astic parts of the strain respectively. 

Consider an arbitrary elastic region a <_ r £ b where a ^_ c and 

b < d with temperatures T    and T.   at the boundaries r ■ a and r ■ b —       m a    D 

respectively. Elimination of u from Eqs. 2 and 3 gives a relation 



between e' and e' . This relation, after substituting Eqs. 10, 11, 1 r    B 

and 6 Into It, reduces to a simple second order differential equation of 

o for a < r < b r     — -• 

d gr , 3 dqr 

dr2   r dr 

2 EoAT 
(13) 

r2 . b2 tn — 

where AT T - Tv a   b 
AT  i b 

c 

ilk) 

Corresponding to AT, AT may be positive or negative. If the pressures 

on the elastic boundaries are p at r ■ a and p. at r ■ b, the solution 

of Eq. 13 and Eq. 1 give: 

.2 
0 ■ - p r   *i 

ü.i 
a2 r2 A EAttT* 

£.1 
r2 r2 

£.1 
•2 

b2 
to — 

a2 

(15) 

b2        b2  b2 
— ■♦• 1     ■=- ♦ ■=- 

^'Pa 
Ü -i 

- i 
EAoT* 

"b^ t.i 

*♦! 

Ü-1 
a2 

b2 in 
r2 

2 

b2 in 
a2 

(16) 

Equations 1 to 12 are valid In a plastic region If the shape of 

the ring does not change significantly during plastic deformation. By 

Tresca's yield coniltlon. In a plastic region r = T-max. [|o |, |oJ, 
t       r   6 

jo. - a |] ■ k, where r Is the maximum shear stress and k is the yield 
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stress In shear.    As mentioned in the introduction, k is assumed to be 

a continuous, general, monotonlcally decreasing, positive and finite 

valued function of temperature. 

0 < k - k(T) < -     and     77 < 0 (17) aT 

dk(T) 
Whereas k(T) must be continuous everywhere,—jrsri— may be continuous 

plecewise. 

In view of Eqs. 6 and 7, when AT and either T or T. are constants, k 
c    a 

can be assumed directly such that 

0 < k - k(r) < -, 7^ > 0 if AT > 0 and — < 0 if AT < 0 (18) 
or or 

When r and AT are both to be considered independent variables, the yield 

stress k con be expressed as 

k ■ k(r,AT), either T or T is held constant, (19) 
■   11 

and 

3k 
r-rr > 0 when T held constant 
3AT — C 

fek 
~r < 0 when T. held constant (20) 
9AT —        d 

3k 
r-rv vanishes at r = c when T is held constant and at r ■ d when T, is 
dAT c d 

held constant. Which of the functions for k given by Eqs. 17,16 and 19 

are to be used will be clear in the analysis depending upon the considera- 

tions being made. 



For an illustration k(T) is taken to be 

k ■ k - BT 
0 

(21) 

where k is yield stress in shear at 0oF and 6 is an appropriate 

positive constant.  By Eq. 6 ur 7, this equation reduces to 

c mf  c (22) 

BAT . d kd " 71ln 7 
to* 

(23) 

where k and k, are the yield stresses in shear at the boundaries 
c    a 

r ■ c and r ■ d respectively. 

3. Behavior of Stresses in an Elastic Region (AT < 0). 

Consider an arbitrary elastic region a<^r<^b ( a>_c,b£d) of 

the ring. The expressions for stress components in Eqs. 15 and 16 are 

continuous and differentiable. 

do 
 1 

dr 
1 
r 

.2 

Ü.i 
(p. - v + 

— - 1  An — 
a2       a2-1 

EaAT 

(2M 

dr 
1 
r 

7 si 

Si .1 
-2 

(-Pa ♦ Pb) * 

— - 1  in — 

EaAT 

(25) 



d(09 - qr) 

dr 
2 
r 

,2 

Äi.i 
(-pa ♦ ^) ♦ 

,2 

£i-i 
EaAT (26) 

.  d0r By Eq. 2k, -— vanishes and hence o assumes maximum or minimum at ar r 

r ■ b m 

2 in 

.2 

e    2 EaATr 
(27) 

'Pa + Pb    1 
r^ cannot exist, if .1 " ö" » and if W does exist it is unique. m EoAT 

Now, if the inequalities 

a < b 

2An^ 

Äi-i 
e   2 EaAT 

< b (28) 

are satisfied by the conditions imposed on the boundaries of the region 

a 1 i" 1 b, then the following three important conclusions can be drawn 

as to the nature of the stresses in the elastic region: (l) a    assumes 
r 

the maximum value (if AT < 0) or the minimum value (if ATe > 0) at 

only one place r in the region, (2) a ■ a. at r and (3) a. and m r   o    m        a 

(o - o ) increase (if ATe > 0) or decrease (if ATe > 0) monotonically 

in the region. The first two conclusions result because the Inequali- 

ties 26 require r by Eq. 27 to be a < r < b, and at r , where m mm 
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do 
 i 

dr 

d 0 > e > 
0,    <■ 0 depending upon AT < 0 respectively by Eq. 13 and 

dr2 

r. ■ o by £q. 1. The third conclusion is due to the Eqs. 25 and 26 9   r 
~pa  pb  1 and the Inequality  + ^ > 0 implied by the first of the 

EaAT* 
Inequalities 28.    Figure 2  (a»c, b»d). Figure 5  (p"a, d"b) and Figure 6 

(p=a,    n=b) illustrate the above behavior of elastic stresses.    The 

Inequalities 28, when rearranged, reduce to 

£.1 
.2 

b2  .    b2 

— in — 

- 1 
EaAT 

^a     ^b 

Äi-i 

. *2 
An — 

-2 

-  1 **f-t  if ATe > 0 

(29) 

or, 

•2 

»itas£ 
- 1 

EaATs 

> -p     + p,    > 
^a        b 

si - 1 
a2 

in 
a2 

-_.. 

- 1 ^L-,  if AT6 < 0 

(30) 

In the following, three different sets of the boundary conditions 

eure shown satisfying the Inequalities 29 (hence. Inequalities 28) when 

ATe  > 0  (i.e. by Eq.   Ill,  AT  >  0): 

(1)    -p   « -p,   s 0.    The Inequalities 29 to be satisfied reduce to 

Ü-1 
a2 

- 1 
b2  ,    b2 — in — 
a2       a2 

EoAT 
< 0 < 

-2 

b2 

in — 
.2 

- 1 EaAT 
(31) 
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a   2 a2 It can be verified that -1 < —= 1 < 0 and 0 < ■ 1 < » for 
b2 . b2 . b2 
— An — In =— 
a2   a2 a2 

b 
!<-<«. Figure 2 where c ■ a and d ■ b illustrates this case. 

(2) -p + pv < 0 and (o- - o ) < 0 at r ■ a, -p + p. < 0 and the a   b        or ab 
second of Inequalities 31 prove the second of Inequalities 29.    Using 

the second condition that (o-o ) <0atr«a with Eqs. 15 and 16, 

the first of Inequalities 29 can be proved easily. Figure 5 where 

p ■ a and d = b illustrates this case. 

(3) oa - a    <0atr«a and on-a >0atr-b. Both these or or 

conditions with Eqs.  15 and 16 satisfy easily the Inequalities 29. 

Figure 6 where o = a and n = b illustrates this case. 

For ATe < 0  (i.e.  AT < 0, by Eq.   Ik)  each of the following four 

different sets of boundary conditions satisfy Inequalities  30 (hence 

Inequalities  20) Just as above: 

(1) -p    = -p.   = 0      Figure 2. a D 

(2) -p    * v,   > 0 €uid o. - a    > 0 at r ■ a. ab or 

(3) o.-o    >0atr"a and oa-o    <0atr»b. Or 6        r 

{k)    -p    + p,   < 0 and a. -o    <0atr"b. •^a     ^b or 

Thus,  if a set of boundary conditions for an elastic region is one of 

the sets mentioned in this section,  the elastic stresses would behave 

according to the conclusions made above and the incipience of yielding, 

new yielding,  further yielding or progress of yielding would be easy 

to predict from that behavior as the loading progresses. 
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k.    Initial Yielding (AT < 0). 

/ c \ In an entirely elastic ring c<-r<_d{l<T<")    with temperature 

gradient (AT ■ AT    < 0), the stresses a    and aQ have distributions of 

the kind shown in Figure 2 as discussed in the previous section where 

a • c and b = d.     The distribution ol the majcimum shear stress   r = — 

maximum [la  L   I a. I,   |o0 - o IJ then follows to be a continuous r w or 

function in three different pieces as shown in Figure 3 for AT > 0 and 

Figure ii for AT<0.     r«— |a.|ina<r<r    (atr«r,a. »a 2 ' e1 ■ m'    e 
da 

and ~ »0),   t ' -r \o„\  in r    < r < r    (at r ■ r  , a   « 0), and ar c     T B "•    ""   e cö 

r ■ # |o. • O I la V   i ' i *•     r decreases monotonically in c _< r ^ r 

and increases monotonically in r   f. r .f. d.    At r = c,   r ■ — |ofi |;  and 

also at r » d,   r s — |o    ~ 0
9l s ö" l*§l«    It can be sllown from Eq.  16 

that  |o  |  at r ■ c,   |a     |  is always  (1 < — < •) greater than  |aß J, o be c 0a 

|o   |  at r = d.    k is monoton!? but increases  if AT > 0 and decreases 

if AT < 0. 

Frrm Figure 3,  it is clear that the incipience of yielding can 

occur only inside at r = c for a certain AT(>0) as AT is bting increas- 

ed from zero while keeping one of the boundary temperatures  constant. 

For AT > 0, AT1 the value of AT for the initial yielding is given by 

the following equation obtained from the condition that ö" |afi   |  ■ 

k  (= k at r = c). c 

£a 
2k 

AT 
C 

+  1 

Lc2 ' 1 
In — 

„2 

-1 

(32) 
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AT    is explicitly determinable in Eq.  31 if T    and hence k    are held 
c c 

constant.  AT1 becomes implicitly determinable in Eq. 31 if T is held 

constant; because k is then a function of T and AT. For simple, 

linear k{T) (Eq. 21) however 

-1 

k. 
aE 

1 + ■==• 
28 

+ 1 

*?       i  i d2 
— - 1  in — 

c2 ^c^ 

(32a^ 

In the above discussion T    or 1. need not necessarily be assumed held 
cd • 

constant all the time from the beginning; it is which of T or T,, that 
c    d 

is held constant during a step that initiates the yielding is important. 

From Figure 1», it is clear that the incipience of yielding can 

occur anywhere at one place or many places o.-j account or the natures of 

k and r. Hence for AT < 0, the incipience of yielding is highly 

dependent upon the relation k(r) which in turn is dependent upon k(T) 

and the loading history. No general equation such as Eq. 32 for AT 

can be vntten. Thus general step by step analysis is prevented fr';m 

here for AT < 0. 

Complete step by step elastic-plastic analysis is carried out only 

for the case of AT ^ 0 in the following sections. A section at the end 

discusses the analysis in general for the case of AT < 0. 

5.  Inner Plastic Region c .£ r .& p (AT > 0). 

Incipience of yielding occurs at r ■ c when o. ■ -2k. As the I 

loading continues a finite plastic region will develop inside.    Subject 

to condition o    < o    <_ 0 the yield condition 



Ik 

oe - -2k (33) 

Eq.  1, and the boundary condition:    a    ■ 0 at r ■ c. determine 

2 
r 

r 

k dr (3M 

Since k > 0 fInequalities 17), o < 0  and o <_ 0. Since k increases 
rr 

monotonically, the area under uur/e k from c to r, k dr is less than 

the area of the rectangle enclosing the curve, k (r - c), where k is 
T r 

the value of k at   an arbitrary point    r.        Therefore kr  >k  (r- c)  > 

k dr and k    > -       k dr.    It follows that 
r      r I 

aA   *   0v,   <   0 
o       r — (35) 

Thus at any stage of loading the yield condition Eq.  33 will always be 

valid.    It may be checked that any other form of the yield condition 

will not give an acceptable stress solution. 

Tue condition of continuity of o    across the interface p and the 

condition:     o    = 0 at r = d,  allow to find the stresses in the elastic 
r 

region p <_ r ^_ d easily from the general Eqs.   I"? and 16 used with Eqs. 

Ik and 31*. 

2 

"  P   J 
v         < 

rP       1 
k dr 

4! 
.2 EoAT 

2 £n - 
c 

.  In — 
d        p 

rf  
d" 

P 

in 
.2 

P2 

(36) 
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k dr 
»7 

d^ 
- 1 

EaAT 

2 in - 
c 

-r to - 
d   p 

2 
Än^-2 

Äi.i 
P2 

(37) 

Equations 36 and 37 will give complete stress distribution upon the 

determination of p. The use of continuity of ofl across p gives the 

following relation to determine p. 

fUT.p) = 2k + 

1 

2 

P ; 
( 

rP 
k dr 

- 

p2    ) EoAT d2 
- £n — 

i    P2J 

f —1 
P2 

d2  ,  2 in - 
— - 1      c 
P2 lp2   J 

♦ 1 0. 

(38) 

This equation and Eq. 32 show that p ■ c when AT = AT . As AT increases 

from AT , if TTTp is continuous — piecewise if necessary, and 

dAT  u  ' (39) 

then p increases with AT.     Inequality 39 can be seen always satisfied 

in the following equation due to Inequality 20 if AT is  increasing and 

T    is constant-    If T    is held constant, Inequa1ity 39 is satisfied 

definitely only when p « c but may or may not be satisfied when p  > c. 

Therefore, since Eq.   39 is satisfied in any case when p ■ c, after an 

incipience of yielding a small plastic region will definitely develop 

inside for a small increment in AT. 
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ft 
dp     m       3AT 

-a A 
3AT 

f       P 

k   + 
P 

- I k dr 
P 

P2   - 

La 

2 £n^ c 

d2 

In — 
P2. 

n2 

4i-l 
P2 

-   1 

dk 
—i 
3P 

k    - - 
P       P 

k dr 
\   2 PZ  

,4-» 
k 
p 

d2 , -  1 c 
P2 

kdr + 
2 £n - c 

1 -  ei 

P2 

d2 

„2 

(^0) 

The denominator and the second term of the numerator are pontive.     The 

first term of the numerator will be positive if T. is  constant; but if 

T    is constant,  it will be zero if p = c and negative if p  > c, by 

Inequality 20.    If p decreases at certain AT before new yielding 

occurs,  it means that the plastic region is undergoing unloading and 

becoming elastic.    At such point the above analysis of stresses must 

be modified and the analysis cannot be continued along the following 

lines. 

For the elastic region p f. r <_ d, the stresses at the boundaries 

p and d  (Inequalities 35)  satisfy the second set of conditions   (for 

AT > 0)  discussed in the section on the behavior of stresses  in an 

elastic region,     o   , ofl, and hence   r,  should therefore be distributee. 

as shown in Figure  5.    It is evident that the yield condition is not 

violated in the elastic region and further yielding continues  from p 

until a second plastic region starts to develop outside if the 
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difference between k and r^ (r »t r ■ d (■ ^ |oe - or| »t r ■ d) 

# oa.) decreases to zero, i.e.  d(k. -  r.)  < 0 or dr. > dk. > 0 as c    Ba a       a a a — 

k. -  r. is approaching zero.    For dAT > 0 and dp > 0, dk    ^0 because 

k. remains constant if T, = constant and increases if T   ■ constant; a d c 

but dr    (■ — do   .), when examined from Eq.  37, canm.t be definitely 

shown to be positive, negative or zero.    Therefore, as the loading 

progresses it is possible that  t    ■ k    may not be satisfied at all and 

the second yielding may never occur,     r. ■ k. by Eq.  37 is 

2k. 2 
P  J 

k dr 
2            EaAT 

r  *d 

P2 i p2 J 

(^1) 

Equations 36 and hi  determine p and AT when the second yielding starts 

outside. The first two terms of Eq. 38 are positive; the third becomes 

definitely nonnegative if — ^ 1; hence if the solutions (p,AT(«»)) of 

Eqs. 36 and 1*1 exist, p must be such that p < 1. 

If the second yielding never occurs and p keeps increasing with 

AT, then finite aT  cannot satisfy Eq. 36 as — ■* 1. Therefore, in such 

a case the ring can become completely plastic only if AT approaches 

infinity without violating the assumptions regarding k. 

Before AT reaches its limit which may have been established due 

to the limitations assumed for k, such as k(r) remains always pcitivo, 

it is possible that the second yielding outside may never be caused to 

occur. For example, for — ■ 10, linear k(T) (Eq. 23, k held consttjit) 

8AT Ea r fl KAI 

and TTJ" « 3 the second yielding is predicted by Eqs. 36 and ^1 when -r— 
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has exceeded Its limit 1 and become I.I69 requiring k(r) to be negative 

In 1 < - < 1.38. — c — 

6. Outer Plastic Region n .< r .< d UT > 0). 

A finite plastic region may form outside a.*ter the second yielding 

starts outside due to k. ■ r |ofi - 0 j at r ■ d. The expressions for 

stresses In the Inner plastic region remain the same (Eqs. 33 and 3^); 

the stresses In the outer plastic region and In the central elastic 

region are now to be determined. 

In the outer plastic region n ^ r £d,the Eq. 1, subject to 

condition that 0 < 0 < o0 the yield condition r — -~   v 

a.  - a    = 21r 
6   r iki) 

and the boundary condition: 0 * 0 at r ■ d, determine r 

0    ■ -2 r Fdr (i»3) 

and 

afl ■ 2k -2 — dr r 

Since k > 0 (Inequalities 17),  for r £ d, 

(*J 

do 
a0 « 2k. at r « d and 3— 6 d dr 

0    < 0 r — 

dk + k 
dr      r 

U5) 

> 0; hence, monotonicilly In- 

creasing a   will be positive in n ^ r jc d, if the inequality 

ae    (ae at r »n) > 0, i.e. 
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k - - dr > 0 
r (k6) 

is always satisfied. This condition will be shown "iways satisfied at 

the end of this section.  Thus the yield condition Eq. k2  remains always 

valid. It may be checked that any other form of the yield condition 

will not give em acceptable stress solution. 

The condition of continuit., ^f c    across the interfaces p and n 

allow to find the stresses in the elastic region p <_ r <_ n easily from 

the general Eqs. 15 and 10 used vitta Eqs. 1^, 3^  and 1+3. 

2 
P i 

k dr 

-- - 1 

— dr 
r 

- 1 

2 ln±        p 
c 

r 2 

r2 
In 

X-.l in^ 

(1*7) 

2 
P J 

( 

P 
■ 

k dr 
r2 

i 

- 2 

I 

d 
1 k 
r 

i 

dr o2  r2 

p-1 p2 

i 

fc.a ta^-2 
EaAÜ 

2 ix p 

r2 
+ 

r2 

P2 
Än ai 

P2 

(W) 
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Equations  ^7 and ^6 will give complete stress distribution upon the 

determination of p and n.     p and n can be determined by using the 

following two relations which are conditions of continuity   of o    across 
9 

p and n. 

-2k [fl 
ai»! 

kdr 

P2 

d 

2   f ^ dr 

2 

2in f       p^ ai-1 »»Hi 

(^9) 

2k    - 2 
n 

Q 

it dr 

vP . 
kdr 

ai-! 
— dr 
r 

^+ 1 

ai- i 

EaAT 

2An^ 
c 

ln*i 
J--    1 
„2 

£n 

(50) 

The Eqs.   k9 and 50 may be reduced to two simpler equations by multiply- 

n2 

ing Eq.   50 by — and then subtracting Eq.  ^9 from it and obtaining 
p2 

f{p,n,AT) k   -i 
P    P 

k dr + 
EaAT 

U £n^ 
P2- 

EaAT 

1* in » c 
d       n (51) 

and by subtracting Eq.   k9 from Eq.     J and obtaining 
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g(p,n,Ari,)= k    + - 
P      P J 

kdr + ML. Änp? . ästÄL. ^2 + k  .2 
a ! .    a n 

rd 

c 
4Än - 

c 

- dr ■ 0 
r 

n      (52) 

It is interesting to note that Eqs. 51 and 52 are nothing but the 

following two equations: 

-oa 
+ o_ + (o ep rp 'en m ) 

EaAT 

2Än - ip2 
(53) 

-o 
ep 

0   + 
rp 

a. + o 
en  rn 

EaAT 

2Än^ 
c 

£ri 
> 

{5k) 

The stresses a    and o with subscript p or n are to be evaluated at 
r    6 

r ■ p or i4 ■ n respectively. 

For the elastic region p .1 r ^ n, the stresses at the boundaries 

r « p and r = n (Inequalities 35, ^5 and k6)  aatisiy the third set of 

conditions  (for AT > 0) discussed in the section on the behavior of 

stresses in an elastic region, o , oQ and, hence, r should therefore 
r  o 

be distributed as shown in Figure 6.  It is evident that the yield 

condition will not be violated in the elastic region, third plastic 

region will not develop and the yielding will continue further at the 

interfaces. 

Equations 51 and 52 determine p and n , but they are general and 

implicit, and cannot be solved in closed form; they require numerical 

solution which could be handled easily by the use of a digital computer. 

Therefore, it is important to establish the existence of the solution 

and the procedure to obtain it. 
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The Eqs.  51 and 52 can be reduced to   Eqa.  30 and hi when n ■ d. 

It was shown in the previous section that the plastic region may develop 

outside only if the second yielding starts at r ■ d for p(< d) and AT 

which satisfy the Eqs.   36 and ^1.    Therefore, Eqs.   51 and 52 have a 

unique solution p,n(* d) for AT which starts yielding outside, and will 

dp dn have unique solution as AT increases if -r^r and TTTT   are continuous   — 

piecewise if necessary,  and 

Uli0 (55) 

fei0 (56) 

These conditions are also required for the validity of the adopted 

analysis which assumes that the plastic regions do not unload as the 

loading progresses.    Figure 7 provides an illustration that it is possible 

to have cases which do not always satisfy Inequalities  55 and 56.    It 

is evident in Figure 7, which is drawr. for linear k(T)   (Eq.  23, k^ held 

\ /        d Ea \ constant) from Eqs.   51 and 52,  that (for — * 5 and TT ■ 100; n starts 

to increase at A.    Analysis must be modified from the point A to include 

the unloading of outer plastic regior. 

It is assumed that the Inequalities  55 and 56 are always satisfied. 

The solution of Eqs.   51 and 52 may be obtained from the intersection of 

the curves  f and g defined by the functions f and g respectively in the 

np plane, as shown in Figure 8.    The slopes of the curves f and g are 

given respectively by 
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3k 

fcf. 
1£ 

~ 3n  n 

EaAT    _  k 

«. to* 
c 

n ""n 
i  2 3n 

an 3f  P , 
3P    \ P  P J 

fP 
k dr 

, EaAT    p 3kp 

c 

(57) 

3n 

g - 3n 

i& 
3P 

£ 
n 

iik
0 

EaAT 
3k 

H n 

1 
P 

dr 
EaAT 

bin 4 c 

3k 

2 3p 

(58) 

and at the intersection point the following relations are satisfied. 

It  .n2Ji 
3n   n 3n 

3p    p  3p 

3ri „2 3n 

g 

(59a) 

(59b) 

(59c) 

The Eqs. 59 result really on account of the nature of Eqs. 51 and 52 

as expressed in Eqs. 53 and 5^, and Eq. 1,  The curves f and g may 

intersect each other at many points, if between two consacutive inter- 

3p   3p0 

30  ~ 3n 
section points becomes zero. This is not possible unless, 

in view of Eq. 59- and the positiveness of denominators of Eqs. 57 or 

58, 

EaAT       n  n 
^tod- n-23n 

c 

(60) 
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Therefore, if the left side of Eq. 60 is positive (negative) for 

p £ n ^ d, the curves f and g increase (decrease) monotonically and 

intersect at only one point giving a unique solution.  If Eq. 60 is 

satisfied for p ^ n id, multiple solutions may arise; an appropriate 

solution must then be chosen from the consideration that p and n 

should be continuous for the neighboring values of AT, as shown in 

Figure 8. 

Jjse and -rjrr   may be obtained as follows by solving two equations: 

^r = 0 and jj^ = 0, and using Eqs. 59. 

1    l_ faf 
3pJ 

[ ^1 
[dATj 

i af 
2   3AT 

3g 
3AT 

(61) 

n2J 
kL 
dAT 

1 

ü 
3n 

3g 
3 AT 

3f 
3 AT 

(62) 

3f 
In Eq. 6l, -r-    (which is twice the denominator in Eq. 57) is axways 

dp 

positive.  In order that the Inequalities 55 and 56 be satisfied, the 

right sides of Eqs. 6l and 62 must be positive; which (unlike Eq. U0) 

are not always guaranteed by either of the cases in which T or T. is 
c   a 

held constant, or when n * d. 

To show that in n < r < d o > 0, i.e.. Inequality ^6 
—  —    6 

always holds, Eqs. 51 and 52 may be used to obtain the following 

EciAT 
equation by eliminating  T between them. 

k In- 
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k - i I kdr 
P j 

c 

ln£ 
1 - 

111 
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a-- 1 
.2 

ai.i 
>< 

.n^  £-1 

(63) 

Clearly, as required, the left iide is positive because the right side 

is positive on account of the Inequalities IT, 35 and 1 < — < • . 

7. Total Yielding c < r ;L d UT > Q). 

If the Inequalities ^5 and >ü are satisfied, the interfaces p and 

n move toward each other as AT increases. The ring then tends to be- 

come totally plastic as — -► 1; and Iq. 53 (or Eq. 5M leads to the 

** *u   EaATC lim    a9n " "pp     .   kmC .     Am . „ result that  = H. j   * *. where AT is AT required for 
2 £n -  p ^ ni _ 1 

p2 lim 
complete yielding, because the continuity of o requires n , (o  - o ) * J 0' '   r  *    — -»I  rp   rn 

P 

= 0 and the Inequalities 35 and ^6 require 0 < aQ - a. < ». It is or)   6p 

assumed that the assumptions made for k are not violated. Hence, Just 

as it is the case with other thermal problems, AT is required to be 

infinite in the present problem for complete yielding of the ring. 

However, the assumptions made for the function k (In. alities 17 or 

18) will impose limitation on AT in a problem which is  being solved 

from actual physical data. 
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8. Displacement and Strains (AT > 0). 

It is assumed that the plastic regions develop and expand mono- 

tonlcally with Increasing loading (AT) as discussed in the previous 

sections. Plastic deformation is assumed incompressible. The yield 

condition r ■ k(T) is nonlsothermal; but, since it is very simple in 

form, the flow rules which have been derived from the consideration 

of a general nonlsothermal yield condition  '   give the same 

relations among the ratios of the plastic strain Increments as those 

customarily used for the isothermal yield condition   , as shown in 

Figure 9. 

Inner Plastic Region (c <_ r <_ p). The flow rules require, 

corresponding to line EF ia   ■ -2k) in Tresca hexagon (Figure 9), 

e" : e" : e" :: 0 : -1 : 1 (61*) 
r   6   z 

Therefore, e «e'; or by Eqs. 2 and 10 

E |ü x o - vaß + EoT (65) 

Integration of Eq.  65 (jives the displacement u with an arbitrary 

constant of integration u   —the displacement at r ■ p. 

rQ 

E(u - u ) 
P 

a dr + v r aedr - Eo        T dr (66) 

u    can be determined by utilizing the fact that the strains at r = p 

must be elastic. 
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Eup " EpEep ' Epcep " p(oep " varp + EaTp) (67) 

a and o. in Eq. 66 and their values at r « p in Eq. 67 are given by 
r    ö 

Eqs. 33 and 31*; and T in Eq. 66 and its value at r ■ p in Eq. 67 are 

given by Eq. 6 (T const«..it) or by Eq. 7 (T. constant). 

Outer Plastic Region (n £ r <_ d). The flow rules require, corres- 

ponding to line AB (o - o = 2k) in Tresca hexagon (Figure 9), 

•       • -     • . 
e' : e" : e" :: -1 : 1 : 0 (68) 
r   9   z 

Therefore, e   + e    ■ e'  + e'  or by Eqs. 2, 3, 10 and 11, 

r, du      u 
(l-v){0. + o ) + 2EaT (69) o       r 

Integration of Eq.  69 gives the displacement u with an arbitrary constant 

of integration u   — the displacement at r = n. 

E(ru - nu ) = (1-v)   |     (o9 + or)dr + 2Ea       T dr (70) 

n n 

u    can be determined by utilizing the fact that the strains a+ r » n 

must be elastic. 

Eu   = EHE      » Eneft'  ■  n(aftn - va^,, + EaT  ) (71) 
n on en en rn n 

o and o. in Eq. 70 and their values at r ■ n in Eq. 71 are given by 

Eqs. ^3 and kk\ and T in Eq. 70 and its value at r ■ n in Eq. 71 are 

given by Eq.  6 (T    constant) or by Eq.  7 (T    constant). 
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Central Elastic Region (o < r < n).  c ■ c' or by Eqs. 3 and 11 —   —        0     0 

the displacement u is given by 

Eu ■ r(oö - va + EoT) (72) 
o    r 

Equations ^7 and kb give the stresses a and o and Eq. 6 or 7 gives T 

to be used in Eq. 72. When the region P ^ r £ d is elastic, Eq. 72 

has stresses o and o, given by Eqs. 36 and 37. 
r    ö 

It may be observed that the displacement field in the plastic 

regions is obtainable from the eJastic strains of those regions (Eqs. 6$ 

and 69), the interface displacements depend upon the pure elastic 

deformation of the central elastic region, and the elastic strains in 

the plastic regions cannot be excessive due to the assumption of perfect 

plasticity which requires the stresses to be bounded. Therefore, the 

strains in the ring will be of the order of magnitude of elastic strains 

and no danger of large deformations or thickening of the ring arises. 

Thus a priori assumption of infinitesimal strains in the analysis 

carried out is Justified. 

Figures 10 and 11 show the displacement and strains at r « c and 

r ■ d respectively versus AT in the case of linear k(T) (Eq. 23). The 

conditions:  c" < 0 in c < r< p and c" > 0 in n < r< d are required 
0       — —      ö        —  — 

by Eqs. 6k  and 66, but are not apparently seen satisfied Ly Eqs. 63 

and 69 respectively from which displacements and strains are completely 

obtained. Figures 10 and 11 confirm respectively that e" < 0 at r » c 
D 

and E" > J at r = d. These inequalities have also been confirmed for 
0 

various points in the plastic regions by the digital computer results. 
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9.    Solution when k Llne>r Functlon of T (AT > 0. T^ ■ Cooatant). 

It is assioKd that T., and hence k., is held constant.    Equation 

23 in the form of 

kd      kd ••! 
(73) 

is used where 

0 < -r-   < 1 
^d 

(7U) 

in order to satisfy the condition k > 0. 

Plastic Region Inside. Stresses in inner plastic region c £ r £ p 

are, by Eqs. 33 and 3^ with Eq. 73, 

2k, - 1 - 
Ml Hi 
kd ^1 c 

!^..1 + £+^ 
2k 

(75) 

^[(l-^(l+ln^-tnc (76) 

Stresses in the elastic region P 1 r £ d corresponding to Eqs. 36 and 

37 nay be obtained easily by using Eqs. 75 and 76. Relation between p 

and AT, corresponding to Eq. 38, is 

PAT m [pi    d2J U   c 

kd ö(-^9-S-J(-3-(-SH(-"J) 
(77) 
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Using this equation, it is possible to obtain the stresses in the elastic 

region p <_r <_ d in terms of p exclusively. 

r 
2k. 

c 
2p   [ 

21 
1  + ^ 

r2J 
-   1  ■»■ 

2pl        H2j 

TO 
-i 

rJ 
21 

1+^ 
r.2J 

1-1 14 in § 
c 

Ea i - Äi .to £ 
«2J d2 c2 Ci       d2' '*^t 1+ An^ 

c 

(T8) 

2k. 
c 
2p 

21 £1 -1 + 

ti d2^ 
-1 

Ea P2 r21 1- ■- -Hn £- 
m   2 n2) 

P2 d -to ■- +in - 
2^ f 

i     r '   *     r ' ' 
1+ £n - 

c 

.Ea 1- ti ^ Ö 
d2 .2J 

+£n £l .I. ^ 1- ^ 
c2 Ci       d2 

>21 21 
1+^ 

d2J 
l-f 1* In* 

c 

(79) 

The value of p, for which the yielding starts outside at r > d, may be 
aed 

obtained from Eqs.  79 and 73 by oaj ■ 2k,, i.e.    ■—- « 1,  or 
00. u cK, 

d 

Ea 8 f-3 n2l 

H2J j „2 r2lP   H2 J 

♦ £n - 
c 

2 21 

I   p d2 d2-1 P. 
1 + £n - 

c 

21 
1+ 3^ 

d2> 
(80) 
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Equation Ö0 is corresponding to an equation obtained by eliminating AT 

between Eq^. kl and 38. Substitution of p determined from Eq. 80 into 

Eq.   77 gives the value of AT at which the yielding starts outside. 

The displacement u in c ^ r <_p, as given by Eqs.  66 and 67 with 

Eqs.  7,  73,  75 and 76 and, assuming T    « 0oF and hence    k   ■ k  ,  is 

E    u r      o    P 
2k, c c r 

BAT  1_ 
k0*n^ 

c 

in* 
c 

_ i 

^+ in^ c r 
- 2 

c      c ♦ to ^ - ^ In i r     c       c 

+ v ßAT     1_ 

0     in — c 

1 + in - 
c 

1-f c * — In — c        c 

: J"       d ,. r     r .    r] 
—   — *" - -      + in — 2|   k      .    d lo        c      c      c      c        cj i 

0    in (81) 

Plastic Region Outside.    Plastic region will form outside if Eq. 

80 has a solution and which when substituted in Eq.   77 does not require 

AT to be such as to violate the assumptions regarding k.    Stresses in 

the outer plastic region n f. r £ d are given by Eqs.   ^3 and kk with 

Eq.   73. 

r 

c 

.    .n   d    .     W         1 

in 

2kd r kd 2in * 

§1 

in *     - 2in * I      ^J r 

(82) 

(83) 

Stresses in the elastic region p ^ r<  n,  corresponding to Eqs.  Uf a 

1+8 may be obtained easily by using Eqs.  75, 76,  82 and 83. 
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The functions f(p,r),AT) and g(p,n,ÄT),  corresponding to Eqs.  51 

and 52 which determine p and n for a AT, are: 

d In - K c^ c'J 

c 

SAT 
k d    In 

:2     ^    d ,. Ea IBk) 

d £n - c 

^ £n ^ + ^ - 2An pep 
d -, Eo , pi — - 1 + T-r In c— p W ^2 

n kd £n ^ c 

Ea ,21 

n      ^     n'       UB       _2 o      (85) 

The displacement uinnf.r^d, as given by Eqs.  70 and 71 with 

Eqs.  7,  73,  82 and 83 and   assuming T    » 0oF and hence k    ■ k  , is 

E   u      „    r      ,    d ^   n^ .    d rr, ■ in — - An-♦-'-+ vin- 
2k0 r c c      r2 ' 

BAT       1 
k0 2£n 4 

c 

k0 2£n Ä  l       'J 

c 

Ea BAT        1 
26    k0    2zni 

c 

2 in ^ + 1 - ^ 
r2j 

:86) 
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Program for a digital computer IBM 360/50 (using the PCP version of 

OS/360) was made by using the equations of this section to check the 

analysis numerically.  For — ■ 5, by taking the values of rr to be 3 and 

100, the positions of the interfaces, stresses, strains and displace- 

ments were obtained for many values of -r— between 0 and 1. Also for 
d 

— ■ 10 and f£" ■ 3 the computer results were obtained; but as mentioned 

at the end of the section on inner plastic region, second yielding did 

BAT 
not occur for -r—£ 1.  Values of displacements and strains were 

kd 
calculated assuming T ■ 0oF. 

10. General Discussion of Case AT < 0. 

As shown before (Figure k),  under general given conditions, the 

uncertainty of place(s) of the development of plastic region(s) arise 

right from the initial yielding of the ring; and hence the analysis in 

general cannot be made in a definite order or led to completion. Only 

a specific problem can be solved completely and in definite order 

following the general procedure for the case of AT > 0 unless the 

plastic regions unload as the loading progresses requiring a modified 

analysis. Analysis must be made in small steps for decreasing AT 

carefully checking the occurrence of a new independent yielding and 

retreat of the interfaces. 

The yield conditions of the inner and outer plastic regions could 

only be as represented by lines AB and EF (Figure 9) respectively for 

AT > 0; and in the same way they would only be as represented by lines 

BC and DE respectively for AT < 0. These yield conditions together 

with the known boundary conditions: 0  ■ 0 , ■ 0 completely determine 

the stresses in those plastic regions. 
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For  AT < 0, there are possibilities that one or more plastic regions, 

with an elastic region separating each other, may appear besides the 

inner and outer ones, for example as shown in Figure k.    Such a plastic 

region may appear with one of the three yield conditions represented by 

lines BC, CD and DE (Figure 9). Lines AB, AF and £F requiring a to be 

negative seem highly unlikely asjuming, at the plastic regions develop 

with increasing loading (-AT), c r.^' no*« decrease after it has been 

positive throughout the initially entirely elastic ring and has been 

increasing with -AT up to the first yielding (£q. 15 and Figure 2). The 

stresses are statically determinate in a plastic region appearing with 

a yield condition o = 2k (line CD), but they are not in the one appear- 

ing with either a. » 2k (line BCj or a - o »2k (line DE) because of 
ö r   ö 

the absence of a known boundary condition to determine the constant of 

integration of Eq, 1 used with the yield condition. In such case, 

displacement considerations must be made on account of the two known 

u 
boundary conditions for displacement u: ~ ■ C« must be elastic at the 

r   o 

two interfaces, and one unknown constant of integration involved in 

obtaining u Just like that in Eq. 67 or 70. Thus the stresses in such 

plastic regions would be dependent of the positions of the interfaces. 

Having determined the stresses — dependent or independent of the 

positions of relevant interfaces — in the plastic regions, the pro- 

cedure to determine the positions of the interfaces, stresses in the 

elastic regions and the displacements throughout the ring is the same as 

that applied for AT > 0. The plastic stresses at the interfaces may 
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not satisfy any of the four conditions given at the end of the section 

on the behavior of stresses in an elastic region, but the behavior of 

the elastic stresses can be inferred by some reasoning and the question 

of violation of yield conditions in the elastic regions can be settled. 

11.  Conclusions. 

The problem is comprised of two cases:  (a) AT > 0 and (b) AT < 0, 

depending upon whether the inside ttiüperature is higher or lower than 

the outside temperauiu .  Conclusions for both the cases are different 

and, hence, they are presented separately. 

(a) AT ■> 0:  The initial yielding always occurs inside, and a 

small finite plastic region with an elastic-plastic interface o 

develops inside due to a small increment in AT. As AT keeps increas- 

ing, p moves definitely outward if T Is held constant, whereas it may 

not if T is held constant.  If p keeps Increasing, before it reaches 

the outer boundary d, a second (outer) plastic region with an elastic- 

plastic interface n is likely to develop from d. No third, new plastic 

region can develop as the inner and outer plastic regions approach 

each other; and AT is required to approach infinity to let — -»• 1 for 

complete yielding.  If the outer plastic region does not develop at 

all and p keeps increasing, then also the ring tends to become complete- 

ly plastic if AT approaches infinity. However, the assumptions made 

for function k (Inequalities 17 or 10) will mostly impose limit on AT 

in a problem which is being solved from actual physical data and com- 

plete yielding will not be realized.  The displacement solution provides 
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a Just i fication to the a pricri assumpt i on of infinitesimal strains at 

high temperatures or at high difference in the boundary temperatures. 

It is shown that in spite of increasing loading (6T), the plastic 

regions (inner only when alone, or both or either of inner and outer) 

m&y suffer unloading, i . e . the elastic-plastic interfaces may retreat. 

This is perhaps a character:sti c •Jn i que of the temperature problems in 

which the yield stress decreases ( ~n effect of softening) or increases 

(an effect of hardening ) as temperature increases or decreases re­

spectively, or in which the softening or hardening effects are produced 

by the thermal dependence of phys i cal parameters. If a part of an 

elastic region had been in plas~ic sT-ate before, the analysis for that 

part must include the residual st rains due to the previous plastic 

deformation; and thus, as a pl astic region starts to unload, the stress 

and displacement analyses are requi red to be carried out together. 

(b) 6T < 0: The elastic-plastic behavior of rings in this case 

is in general different fron that discussed above. Step by step 

analysis of the problem under general given conditions cannot be made; 

each specific problem must be treated in its own right and conclusions 

be drawn following the general procedure adopted for the case of 6T > 0. 

More than two plas~i c regions are likely to develop . Stresses 

would not be statically determ1nate i n an independent plastic region, 

except inner or outer one, occurring with t he yield condition either 

a8 = 2k or or - cr 8 = 2k . It is possible that the interfaces may 

retreat despite increasing loading . 
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The present problem when extended by allowing three more 

considerations may yield some more interesting results. Unloading 

(if occurring) of plastic regions with increasing loading, unloading 

of the ring leading to residual stresse: and the transient tempera- 

ture distributions while loading and unloading the ring may be 

considered. 
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